MATH 54 - HINTS TO HOMEWORK 10

PEYAM TABRIZIAN

Here are a couple of hints to Homework 10! Enjoy :)

SECTION 6.1: INNER PRODUCTS, LENGTHS, AND ORTHOGONALITY

6.1.9. Calculate $\frac{\mathbf{u}}{\|\mathbf{u}\|}$

- **6.1.13.** Calculate ||x y||
- **6.1.15.** Check if $\mathbf{a} \cdot \mathbf{b} = 0$ or not

6.1.19.

- (a) **T**
- (b) **T**
- (c) **T** (either look on page 319, or do it directly: you're given that $||\mathbf{u} \mathbf{v}|| = ||\mathbf{u} + \mathbf{v}||$, Now square this to get $(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$, expand this out and cancel out terms until you eventually get $\mathbf{u} \cdot \mathbf{v} = 0$)

and cancel out terms until you contain f_{0} of f_{0} . (d) **F** (those two concepts are unrelated! For example, consider $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then $Col(A) = Span\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$, while $Nul(A) = Span\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$. Then, for example $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ is not orthogonal to $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. However, what is true is that Nul(A) is perpendicular to Row(A)

(e) T (Remember W[⊥] is the set of vectors orthogonal to W. Now if x is orthogonal to each v_j, then x is orthogonal to W because the v_j span W)

6.1.20.

(a) **T** ($\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$)

(b) **F** (Take
$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $c = -1$)

- (c) **T** (by definition of W^{\perp})
- (d) T (expend the right-hand-side out and cancel some terms)
- (e) T (See theorem 3 on page 321. Don't worry too much about that for the exam)

6.1.22. $\mathbf{u} \cdot \mathbf{u} = 0$ only if $\mathbf{u} = \mathbf{0}$

Date: Tuesday, July 31st, 2012.

PEYAM TABRIZIAN

6.1.24. Use the fact that $\|\mathbf{u} + \mathbf{v}\| = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$ and expand this out! Similar for the other term! Also, use the fact that $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2$ and similar for the other term!

6.1.27. Calculate $\mathbf{y} \cdot (\mathbf{u} + \mathbf{v})$

SECTION 6.2: ORTHOGONAL SETS

Remember: A set \mathcal{B} is orthogonal if for every pair of distinct vectors **u** and **v**, $\mathbf{u} \cdot \mathbf{v} = 0$. It is orthonormal if it is orthogonal and every vector has length 1. An orthogonal set can be made orthonormal by dividing every vector by its length.

6.2.1, 6.2.3. Show that $\mathbf{u} \cdot \mathbf{v} = 0$ (or not), $\mathbf{u} \cdot \mathbf{w} = 0$ (or not) and $\mathbf{u} \cdot \mathbf{w} = 0$ (or not)

6.2.7. Show $\mathbf{u_1} \cdot \mathbf{u_2} = 0$, Then use the fact that if $\mathbf{x} = a\mathbf{u_1} + b\mathbf{u_2}$, then $a = \frac{\mathbf{x} \cdot \mathbf{u_1}}{\mathbf{u_1} \cdot \mathbf{u_1}}$, and $b = \frac{\mathbf{x} \cdot \mathbf{u_2}}{\mathbf{u_2} \cdot \mathbf{u_2}}$

6.2.9. Similar to 6.2.7

6.2.11, 6.2.15. The formula for orthogonal projection of y on the line spanned by u is:

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

The distance between \mathbf{u} and L is then $\|\mathbf{y} - \hat{\mathbf{y}}\|$

6.2.17, 6.2.19. Similar to 6.2.1, 6.2.3. In addition, you have to verify that each vector has length 1. If it doesn't, calculate $\frac{\mathbf{u}}{\|\mathbf{u}\|}$

6.2.23.

- (a) **T** (Consider $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$. It is linearly independent, but not orthogonal) (b) **T**(just use dot products / hugging
- (c) **F**
- (d) T
- (e) **F** (it's $\|\mathbf{y} \hat{\mathbf{y}}\|$)

6.2.24.

- (a) T(it could contain the 0 vector and still be orthogonal, but if you ignore this, it is F)
- (b) **F** (the length of each vector has to be = 1)
- (c) $\mathbf{T}(||A\mathbf{x}|| = ||\mathbf{x}||)$
- (d) T(This is because $\left(\frac{\mathbf{y}\cdot\mathbf{v}}{\mathbf{v}\cdot\mathbf{v}}\right)\mathbf{v} = \left(\frac{\mathbf{y}\cdot c\mathbf{v}}{c\mathbf{v}\cdot c\mathbf{v}}\right)c\mathbf{v}$) (e) T(it has determinant ±1)

6.2.29. First of all, UV is invertible because $det(UV) = det(U)det(V) = (\pm 1)(\pm 1) =$ $\pm 1 \neq 0$, also $(UV)^{-1} = V^{-1}U^{-1} = V^T U^T = (UV)^T$

Here are all the basic facts that you'll need:

(1) If $W = Span \{ \mathbf{u_1}, \mathbf{u_2} \cdots \mathbf{u_k} \}$, then the orthogonal projection of y onto W is:

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}\right) \mathbf{u}_2 + \dots + \left(\frac{\mathbf{y} \cdot \mathbf{u}_k}{\mathbf{u}_k \cdot \mathbf{u}_k}\right) \mathbf{u}_k$$

- (2) Then $\hat{\mathbf{y}}$ is in $W, y \hat{\mathbf{y}}$ is in W^{\perp} (that is, orthogonal to W).
- (3) $\mathbf{y} = (\hat{\mathbf{y}}) + (y \hat{\mathbf{y}})$, which decomposes \mathbf{y} as a sum of two vectors, one in W and the other one orthogonal to W.
- (4) $\hat{\mathbf{y}}$ is the closest point to \mathbf{y} in W.
- (5) $||y \hat{y}||$ is the smallest distance between y and W.

6.3.1. $\mathbf{x} = \hat{\mathbf{x}} + (\mathbf{x} - \hat{\mathbf{x}})$, where $\hat{\mathbf{x}}$ is the projection on $Span \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$. Use the formula above!

6.3.3, 6.3.5, 6.3.7, 6.3.18(b). $\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}\right) \mathbf{u}_1 + \left(\frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2}\right) \mathbf{u}_2$. For 6.3.7, they mean $\mathbf{y} = \hat{\mathbf{y}} + (\mathbf{y} - \hat{\mathbf{y}})$, and for 6.3.11, they mean $\hat{\mathbf{y}}$

6.3.21.

- (a) **T**
- (b) **T**
- (c) \mathbf{F} (see the sentence after the end of the proof on page 336)
- (d) **T**
- (e) **T**

6.3.22.

- (a) $\mathbf{T}(\text{if } \mathbf{v} \text{ is in } W^{\perp}, \text{ then } \mathbf{v} \cdot \mathbf{w} = 0 \text{ for every } \mathbf{w} \text{ in } W$. But if \mathbf{v} is also in W, then we can let $\mathbf{w} = \mathbf{v}$, so $\mathbf{v} \cdot \mathbf{v} = 0$, but then $\mathbf{v} = \mathbf{0}$)
- (b) T(It's the sum of the orthogonal projections on Span {v₁}, Span {v₂}, etc., see page 339)
- (c) **T**(by uniqueness of such a decomposition)
- (d) **T**
- (e) **F** (It's $U^T U \mathbf{x} = \mathbf{x}$)

SECTION 6.4: THE GRAM-SCHMIDT PROCESS

First let $\mathbf{v_1} = \mathbf{u_1}$ and cross out $\mathbf{u_1}$ from your list! Then calculate $\hat{\mathbf{u_2}} = \begin{pmatrix} \underline{\mathbf{u_2} \cdot \mathbf{v_1}} \\ \mathbf{v_1} \cdot \mathbf{v_1} \end{pmatrix} \mathbf{v_1}$.

Then let $\mathbf{v_2} = \mathbf{u_2} - \hat{\mathbf{u_2}}$, and cross out $\mathbf{u_2}$ from your list!

If you're given only 2 vectors, you're done, otherwise calculate: $\hat{\mathbf{u}_3} = \begin{pmatrix} \underline{\mathbf{u}_3 \cdot \mathbf{v}_1} \\ \overline{\mathbf{v}_1 \cdot \mathbf{v}_1} \end{pmatrix} \mathbf{v_1} + \begin{pmatrix} \underline{\mathbf{u}_3 \cdot \mathbf{v}_2} \\ \overline{\mathbf{v}_2 \cdot \mathbf{v}_2} \end{pmatrix} \mathbf{v_2}$

PEYAM TABRIZIAN

Then let $\mathbf{v_3} = \mathbf{u_3} - \hat{\mathbf{u_3}}$, and cross out $\mathbf{u_3}$ from your list!

If you're given only 3 vecotrs, you're done, otherwise repeat this process until you run out of vectors in your list!

To get an *orthonormal* basis, just divide every vector at the end by its length. At every step, it's helpful to multiply your vector by a scalar to avoid fractions. This is ok, because you'll normalize them at the end anyway!

6.4.9, 6.4.11. What they mean is apply Gram-Schmidt to $\begin{bmatrix} 3\\1\\-1\\3 \end{bmatrix}$, $\begin{bmatrix} -5\\1\\-2\\-7 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\-2\\8 \end{bmatrix}$, similar with 6.4.11

with 0.1.1

6.4.17.

- (a) **F** (*c* has to be nonzero, otherwise the set won't be linearly independent; other than that, the statement is true)
- (b) **T**(that's the point of the G-S process!)
- (c) **T**(Multiply the equation A = QR by Q^T , and you get $Q^T A = Q^T QR = IR = R$, so $R = Q^T A$)

6.4.18.

- (a) $T(I'm assuming v_1, v_2, v_3 are obtained using the G-S process)$
- (b) **T**(In other words, if $\mathbf{x} \hat{\mathbf{x}} = 0$, then \mathbf{x} is in W)
- (c) Ignore (but it's T, and that's because you obtain Q by applying the G-S process to the columns of A)

4