MATH 54 - HINTS TO HOMEWORK 10

PEYAM TABRIZIAN

Here are a couple of hints to Homework 10! Enjoy :)

SECTION 6.1: INNER PRODUCTS, LENGTHS, AND ORTHOGONALITY
6.1.9. Calculate $\frac{\mathbf{u}}{\|\mathbf{u}\|}$
6.1.13. Calculate $\|x-y\|$
6.1.15. Check if $\mathbf{a} \cdot \mathbf{b}=0$ or not
6.1.19.
(a) T
(b) T
(c) \mathbf{T} (either look on page 319, or do it directly: you're given that $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$, Now square this to get $(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})$, expand this out and cancel out terms until you eventually get $\mathbf{u} \cdot \mathbf{v}=0$)
(d) \mathbf{F} (those two concepts are unrelated! For example, consider $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, then $\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$, while $\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Then, for example $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is not orthogonal to $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. However, what is true is that $\operatorname{Nul}(A)$ is perpendicular to $\operatorname{Row}(A)$
(e) \mathbf{T} (Remember W^{\perp} is the set of vectors orthogonal to W. Now if \mathbf{x} is orthogonal to each $\mathbf{v}_{\mathbf{j}}$, then \mathbf{x} is orthogonal to W because the $\mathbf{v}_{\mathbf{j}}$ span W)
6.1.20.
(a) $\mathbf{T}(\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u})$
(b) \mathbf{F} (Take $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $c=-1$)
(c) \mathbf{T} (by definition of W^{\perp})
(d) \mathbf{T} (expend the right-hand-side out and cancel some terms)
(e) \mathbf{T} (See theorem 3 on page 321 . Don't worry too much about that for the exam)
6.1.22. $\mathbf{u} \cdot \mathbf{u}=0$ only if $\mathbf{u}=\mathbf{0}$

Date: Tuesday, July 31st, 2012.
6.1.24. Use the fact that $\|\mathbf{u}+\mathbf{v}\|=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})$ and expand this out! Similar for the other term! Also, use the fact that $\mathbf{u} \cdot \mathbf{u}=\|\mathbf{u}\|^{2}$ and similar for the other term!

6.1.27. Calculate $\mathbf{y} \cdot(\mathbf{u}+\mathbf{v})$

Section 6.2: Orthogonal sets

Remember: A set \mathcal{B} is orthogonal if for every pair of distinct vectors \mathbf{u} and $\mathbf{v}, \mathbf{u} \cdot \mathbf{v}=0$. It is orthonormal if it is orthogonal and every vector has length 1 . An orthogonal set can be made orthonormal by dividing every vector by its length.
6.2.1, 6.2.3. Show that $\mathbf{u} \cdot \mathbf{v}=0$ (or not), $\mathbf{u} \cdot \mathbf{w}=0$ (or not) and $\mathbf{u} \cdot \mathbf{w}=0$ (or not)
6.2.7. Show $\mathbf{u}_{\mathbf{1}} \cdot \mathbf{u}_{\mathbf{2}}=0$, Then use the fact that if $\mathbf{x}=a \mathbf{u}_{\mathbf{1}}+b \mathbf{u}_{\mathbf{2}}$, then $a=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}$, and $b=\frac{\mathbf{x} \cdot \mathbf{u}_{\mathbf{2}}}{\mathbf{u}_{2} \cdot \mathbf{u}_{\mathbf{2}}}$
6.2.9. Similar to 6.2 .7
6.2.11, 6.2.15. The formula for orthogonal projection of \mathbf{y} on the line spanned by \mathbf{u} is:

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

The distance between \mathbf{u} and L is then $\|\mathbf{y}-\hat{\mathbf{y}}\|$
6.2.17, 6.2.19. Similar to $6.2 .1,6.2 .3$. In addition, you have to verify that each vector has length 1. If it doesn't, calculate $\frac{\mathbf{u}}{\|\mathbf{u}\|}$
6.2.23.
(a) \mathbf{T} (Consider $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$. It is linearly independent, but not orthogonal)
(b) \mathbf{T} (just use dot products / hugging)
(c) \mathbf{F}
(d) T
(e) $\mathbf{F}($ it's $\|\mathbf{y}-\hat{\mathbf{y}}\|$)

6.2.24.

(a) \mathbf{T} (it could contain the $\mathbf{0}$ vector and still be orthogonal, but if you ignore this, it is F)
(b) \mathbf{F} (the length of each vector has to be $=1$)
(c) $\mathbf{T}(\|A \mathbf{x}\|=\|\mathbf{x}\|)$
(d) \mathbf{T} (This is because $\left.\left(\frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\left(\frac{\mathbf{y} \cdot \mathbf{v}}{c \mathbf{v} \cdot c \mathbf{v}}\right) c \mathbf{v}\right)$
(e) $\mathbf{T}($ it has determinant $\pm 1)$
6.2.29. First of all, $U V$ is invertible because $\operatorname{det}(U V)=\operatorname{det}(U) \operatorname{det}(V)=(\pm 1)(\pm 1)=$ $\pm 1 \neq 0$, also $(U V)^{-1}=V^{-1} U^{-1}=V^{T} U^{T}=(U V)^{T}$

SECTION 6.3: ORTHOGONAL PROJECTION

Here are all the basic facts that you'll need:
(1) If $W=\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}} \cdots \mathbf{u}_{\mathbf{k}}\right\}$, then the orthogonal projection of \mathbf{y} onto W is:

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{\mathbf{2}}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{\mathbf{k}}}{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{u}_{\mathbf{k}}}\right) \mathbf{u}_{\mathbf{k}}
$$

(2) Then $\hat{\mathbf{y}}$ is in $W, y-\hat{\mathbf{y}}$ is in W^{\perp} (that is, orthogonal to W).
(3) $\mathbf{y}=(\hat{\mathbf{y}})+(y-\hat{\mathbf{y}})$, which decomposes \mathbf{y} as a sum of two vectors, one in W and the other one orthogonal to W.
(4) $\hat{\mathbf{y}}$ is the closest point to \mathbf{y} in W.
(5) $\|y-\hat{\mathbf{y}}\|$ is the smallest distance between \mathbf{y} and W.
6.3.1. $\mathbf{x}=\hat{\mathbf{x}}+(\mathbf{x}-\hat{\mathbf{x}})$, where $\hat{\mathbf{x}}$ is the projection on $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$. Use the formula above!
6.3.3, 6.3.5, 6.3.7, 6.3.18(b). $\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{\mathbf{1}}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{\mathbf{2}}$. For 6.3 .7 , they mean $\mathbf{y}=$ $\hat{\mathbf{y}}+(\mathbf{y}-\hat{\mathbf{y}})$, and for 6.3.11, they mean $\hat{\mathbf{y}}$

6.3.21.

(a) T
(b) \mathbf{T}
(c) \mathbf{F} (see the sentence after the end of the proof on page 336)
(d) \mathbf{T}
(e) \mathbf{T}

6.3.22.

(a) \mathbf{T} (if \mathbf{v} is in W^{\perp}, then $\mathbf{v} \cdot \mathbf{w}=0$ for every \mathbf{w} in W. But if \mathbf{v} is also in W, then we can let $\mathbf{w}=\mathbf{v}$, so $\mathbf{v} \cdot \mathbf{v}=0$, but then $\mathbf{v}=\mathbf{0}$)
(b) \mathbf{T} (It's the sum of the orthogonal projections on $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}\right\}, \operatorname{Span}\left\{\mathbf{v}_{\mathbf{2}}\right\}$, etc., see page 339)
(c) \mathbf{T} (by uniqueness of such a decomposition)
(d) \mathbf{T}
(e) \mathbf{F} (It's $\left.U^{T} U \mathbf{x}=\mathbf{x}\right)$

Section 6.4: The Gram-Schmidt process

Gram-Schmidt process: Let's say you want to find an orthogonal basis $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$

First let $\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}$ and cross out $\mathbf{u}_{\mathbf{1}}$ from your list!
Then calculate $\hat{\mathbf{u}}_{\mathbf{2}}=\left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{1} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}$.
Then let $\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\hat{\mathbf{u}_{2}}$, and cross out $\mathbf{u}_{\mathbf{2}}$ from your list!
If you're given only 2 vectors, you're done, otherwise calculate:
$\hat{\mathbf{u}_{3}}=\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}}$

Then let $\mathbf{v}_{\mathbf{3}}=\mathbf{u}_{\mathbf{3}}-\hat{\mathbf{u}_{\mathbf{3}}}$, and cross out $\mathbf{u}_{\mathbf{3}}$ from your list!
If you're given only 3 vecotrs, you're done, otherwise repeat this process until you run out of vectors in your list!

To get an orthonormal basis, just divide every vector at the end by its length. At every step, it's helpful to multiply your vector by a scalar to avoid fractions. This is ok, because you'll normalize them at the end anyway!
6.4.9, 6.4.11. What they mean is apply Gram-Schmidt to $\left[\begin{array}{c}3 \\ 1 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{c}-5 \\ 1 \\ 5 \\ -7\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -2 \\ 8\end{array}\right]$, similar with 6.4.11

6.4.17.

(a) \mathbf{F} (c has to be nonzero, otherwise the set won't be linearly independent; other than that, the statement is true)
(b) \mathbf{T} (that's the point of the G-S process!)
(c) \mathbf{T} (Multiply the equation $A=Q R$ by Q^{T}, and you get $Q^{T} A=Q^{T} Q R=I R=$ R, so $R=Q^{T} A$)
6.4.18.
(a) $\mathbf{T}\left(\mathrm{I} ' m\right.$ assuming $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are obtained using the G-S process)
(b) \mathbf{T} (In other words, if $\mathbf{x}-\hat{\mathbf{x}}=0$, then x is in W)
(c) Ignore (but it's T, and that's because you obtain Q by applying the G-S process to the columns of A)

