
MATH 54 − HINTS TO HOMEWORK 10

PEYAM TABRIZIAN

Here are a couple of hints to Homework 10! Enjoy :)

SECTION 6.1: INNER PRODUCTS, LENGTHS, AND ORTHOGONALITY

6.1.9. Calculate u
‖u‖

6.1.13. Calculate ‖x− y‖

6.1.15. Check if a · b = 0 or not

6.1.19.
(a) T
(b) T
(c) T (either look on page 319, or do it directly: you’re given that ‖u− v‖ = ‖u+ v‖,

Now square this to get (u− v) · (u− v) = (u+ v) · (u+ v), expand this out
and cancel out terms until you eventually get u · v = 0)

(d) F (those two concepts are unrelated! For example, consider A =

1 0 0
1 0 0
0 0 0

,

then Col(A) = Span


11
0

, while Nul(A) = Span


01
0

 ,

00
1

. Then,

for example

11
0

 is not orthogonal to

01
0

. However, what is true is that Nul(A)

is perpendicular to Row(A)
(e) T (Remember W⊥ is the set of vectors orthogonal to W . Now if x is orthogonal

to each vj, then x is orthogonal to W because the vj span W )

6.1.20.
(a) T (u · v = v · u)

(b) F (Take v =

[
1
0

]
and c = −1)

(c) T (by definition of W⊥)
(d) T (expend the right-hand-side out and cancel some terms)
(e) T (See theorem 3 on page 321. Don’t worry too much about that for the exam)

6.1.22. u · u = 0 only if u = 0
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6.1.24. Use the fact that ‖u+ v‖ = (u+ v) · (u+ v) and expand this out! Similar for
the other term! Also, use the fact that u · u = ‖u‖2 and similar for the other term!

6.1.27. Calculate y · (u+ v)

SECTION 6.2: ORTHOGONAL SETS

Remember: A set B is orthogonal if for every pair of distinct vectors u and v, u ·v = 0.
It is orthonormal if it is orthogonal and every vector has length 1. An orthogonal set can
be made orthonormal by dividing every vector by its length.

6.2.1, 6.2.3. Show that u · v = 0 (or not), u ·w = 0 (or not) and u ·w = 0 (or not)

6.2.7. Show u1 · u2 = 0, Then use the fact that if x = au1 + bu2, then a = x·u1

u1·u1
, and

b = x·u2

u2·u2

6.2.9. Similar to 6.2.7

6.2.11, 6.2.15. The formula for orthogonal projection of y on the line spanned by u is:

ŷ =
(y · u
u · u

)
u

The distance between u and L is then ‖y − ŷ‖

6.2.17, 6.2.19. Similar to 6.2.1, 6.2.3. In addition, you have to verify that each vector has
length 1. If it doesn’t, calculate u

‖u‖

6.2.23.

(a) T (Consider


11
1

 ,

11
0

 ,

10
0

. It is linearly independent, but not orthogonal)

(b) T(just use dot products / hugging)
(c) F
(d) T
(e) F (it’s ‖y − ŷ‖)

6.2.24.
(a) T(it could contain the 0 vector and still be orthogonal, but if you ignore this, it is

F)
(b) F (the length of each vector has to be = 1)
(c) T(‖Ax‖ = ‖x‖)
(d) T(This is because

(
y·v
v·v
)
v =

(
y·cv
cv·cv

)
cv)

(e) T(it has determinant ±1)

6.2.29. First of all, UV is invertible because det(UV ) = det(U)det(V ) = (±1)(±1) =
±1 6= 0, also (UV )−1 = V −1U−1 = V TUT = (UV )T
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SECTION 6.3: ORTHOGONAL PROJECTION

Here are all the basic facts that you’ll need:
(1) If W = Span {u1,u2 · · ·uk}, then the orthogonal projection of y onto W is:

ŷ =

(
y · u1

u1 · u1

)
u1 +

(
y · u2

u2 · u2

)
u2 + · · ·+

(
y · uk

uk · uk

)
uk

(2) Then ŷ is in W , y − ŷ is in W⊥ (that is, orthogonal to W ).
(3) y = (ŷ) + (y − ŷ), which decomposes y as a sum of two vectors, one in W and

the other one orthogonal to W .
(4) ŷ is the closest point to y in W .
(5) ‖y − ŷ‖ is the smallest distance between y and W .

6.3.1. x = x̂+(x− x̂), where x̂ is the projection on Span {u1,u2,u3}. Use the formula
above!

6.3.3, 6.3.5, 6.3.7, 6.3.18(b). ŷ =
(

y·u1

u1·u1

)
u1 +

(
y·u2

u2·u2

)
u2. For 6.3.7, they mean y =

ŷ + (y − ŷ), and for 6.3.11, they mean ŷ

6.3.21.
(a) T
(b) T
(c) F (see the sentence after the end of the proof on page 336)
(d) T
(e) T

6.3.22.
(a) T(if v is in W⊥, then v ·w = 0 for every w in W . But if v is also in W , then we

can let w = v, so v · v = 0, but then v = 0)
(b) T(It’s the sum of the orthogonal projections on Span {v1}, Span {v2}, etc., see

page 339)
(c) T(by uniqueness of such a decomposition)
(d) T
(e) F (It’s UTUx = x)

SECTION 6.4: THE GRAM-SCHMIDT PROCESS

Gram-Schmidt process: Let’s say you want to find an orthogonal basis {v1,v2,v3}
from {u1,u2,u3}

First let v1 = u1 and cross out u1 from your list!
Then calculate û2 =

(
u2·v1

v1·v1

)
v1.

Then let v2 = u2 − û2, and cross out u2 from your list!

If you’re given only 2 vectors, you’re done, otherwise calculate:
û3 =

(
u3·v1

v1·v1

)
v1 +

(
u3·v2

v2·v2

)
v2
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Then let v3 = u3 − û3, and cross out u3 from your list!

If you’re given only 3 vecotrs, you’re done, otherwise repeat this process until you run
out of vectors in your list!

To get an orthonormal basis, just divide every vector at the end by its length. At every
step, it’s helpful to multiply your vector by a scalar to avoid fractions. This is ok, because
you’ll normalize them at the end anyway!

6.4.9, 6.4.11. What they mean is apply Gram-Schmidt to


3
1
−1
3

 ,


−5
1
5
−7

 ,


1
1
−2
8

, similar

with 6.4.11

6.4.17.
(a) F (c has to be nonzero, otherwise the set won’t be linearly independent; other than

that, the statement is true)
(b) T(that’s the point of the G-S process!)
(c) T(Multiply the equation A = QR by QT , and you get QTA = QTQR = IR =

R, so R = QTA)

6.4.18.
(a) T(I’m assuming v1,v2,v3 are obtained using the G-S process)
(b) T(In other words, if x− x̂ = 0, then x is in W )
(c) Ignore (but it’s T, and that’s because you obtain Q by applying the G-S process to

the columns of A)


